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 This article is concerned with the coupled linear quasi-static theory of thermoelasticity for 
porous materials under local thermal equilibrium. The system of equations is based on the 
constitutive equations, Darcy's law of the flow of a fluid through a porous medium, Fourier's 
law of heat conduction, the equations of equilibrium, fluid mass conservation and heat 
transfer. The system of governing equations is expressed in terms of displacement vector 
field, the change of volume fraction of pores, the change of fluid pressure in pore network 
and the variation of temperature of porous material. The present paper is devoted to 
construct explicit solutions of the quasi-static boundary value problems (BVPs) of coupled 
theory of thermoelasticity for a porous elastic sphere and for a space with a spherical cavity. 
In this research the regular solution of the system of equations for an isotropic porous 
material is constructed by means of the elementary (harmonic, bi-harmonic and meta-
harmonic) functions. The basic boundary value problems (the Dirichlet type boundary value 
problem for a sphere and the Neumann type boundary value problem for a space with a 
spherical cavity) are solved explicitly. The obtained solutions are given by means of the 
harmonic, bi-harmonic and meta-harmonic functions. For the harmonic functions the 
Poisson type formulas are obtained. The bi-harmonic and meta-harmonic functions are 
presented as absolutely and uniformly convergent series. 

1. Introduction 

In most solids there are pores through which the liquid or gas may 
flow.  Many materials are known as porous materials, the human skin 
has a larger number of pores, cancellous bone is considered as a 
porous material, etc. 

The foundations of the theory of elastic materials with voids were first 
proposed by Cowin and Nunziato (1979,1983) [1,2]. They investigated 
the linear and nonlinear theories of elastic materials with voids. In 
these theories the independent variables are displacement vector 
field and the change of volume fraction of pores. Such materials 
include, rocks and soils, granulated and some other manufactured 
porous materials. The history of development of porous body 
mechanics, the main results and the sphere of their application are 
set forth in detail in the monographs (de Boer 2000, Straughan 
2008,2017, Svanadze 2019) [3-6] (see references therein). The 
generalization of the theory of elasticity and thermoelasticity for 
materials with double voids belongs to Ieşan and Quintanilla (2014) 
[7]. In (2020) [8] Svanadze considered the coupled linear model of 
porous elastic solids by combining the following three variables: the 
displacement vector field, the volume fraction of pores and the 
change of fluid pressure in pore network. In this work the basic 
internal and external BVPs of steady vibrations are investigated, the 
uniqueness and the existence theorems are proved by means of the 
potential method and the theory of singular integral equations. The 
coupled linear theory of thermoelasticity for isotropic porous 
materials by using the concept of Darcy’s law and the volume fraction 
of pore network are presented by Svanadze (2019) [9].  The quasi-static 
BVPs of the theories of elasticity and thermoelasticity for porous 
materials are studied by Mikelashvili (2020,2021) [10,11]. These works 
[8-11] represents a first step in the coupled linear theory of elasticity 
and thermoelasticity of porous materials. 

For applications, it is especially important to construct the solutions 
of BVPs in explicit form because such solutions enable us to 
effectively perform quantitative analysis of the investigated 
problems. Questions related to this topic, different types of problems 
in the theory of elasticity and thermoelasticity of porous materials are 
considered, for example, in the works [12-26], where the explicit 
solutions are constructed for some BVPs for the concrete domains. 

The present paper is devoted to construct explicit solutions of the 
quasi-static boundary value problems (BVPs) of coupled theory of 
thermoelasticity for porous elastic sphere and for a space with a 
spherical cavity. The regular solution of the system of equations for 
an isotropic porous material is constructed by means of the 
elementary (harmonic, bi-harmonic and meta-harmonic) functions. 
The basic BVPs for a sphere and for a space with a spherical cavity are 
solved explicitly. 

2. Basic equations and boundary value problems 

Let ),,( 321 xxxx =
 
be a point in the Euclidean three-dimensional 

space .3E  We consider an isotropic  thermoelastic  porous sphere 

,D  bounded by a  surface ,S  with center at the origin and radius

R . Let 
−D  be the whole space with a spherical cavity and with 

boundary .S    

The basic homogeneous system of equations in the coupled linear 
quasi-static theory of thermoelasticity for porous materials expressed 

in terms of the displacement vector ( ),xu
 
the change of the volume 

fraction ,ϕ  the change of fluid pressure in pore network p
 
and the 

variation of temperature  θ  has the following form (Mikelashvili [11]) 
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where 0γ  is the thermal expansion  coefficient, 0a  is measures the 

compressibility of pores,
 

,, 1αα 21,,, γγmb  are the 

constitutive  coefficients, 
'
'

µ
kk = , 'µ   is the fluid viscosity, 'k  is 

the macroscopic  intrinsic permeability  associated with the pore 

network , 0k    is the thermal conductivity  of the porous material,  a  

is  the heat capacity, µλ,  are the Lame constants,  β   is the 

effective  stress  parameter,   ω  is the oscillation frequency, ,0>ω  

∆  is the 3D Laplace operator. 

Definition 1.  A vector-function ( )Tp θϕ ,,,uU = defined in the 

domain   )( −DD  is called regular if   
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For the system (1), we pose the following boundary value problems: 

Problem 1: (The Dirichlet type BVP) Find a regular solution ,U
 

satisfying  in D  the system of
 
equations (1), if  on the boundary  S  

the following conditions are given: 
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Problem 2: (The Neumann type BVP)Find a regular solution ,U
 

satisfying  in 
−D   the system of

 
equations (1), if  on the boundary  S  

the following conditions are given: 

,,),(

),(),()),((

65

4

Szf
n

f
n
p

f
nx

∈=






∂
∂

=






∂
∂

=






∂
∂

=∂

−−
−

−

−
−

−−

θ

ϕ

z

zzfunP
 

where 
±±±± = 654321 ,,),,,( fffffff  are the given  

functions. Moreover, we assume that 
±

if can be presented in the  

form of series, 
±⋅)(  denotes the limiting value from  ,±D   

),(lim)( xUzU
SzxD ∈→⊃

+
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the vector unP ),( x∂  is defined  in the following form 

),(),(),( 0θγβϕ −−+∂=∂ pbxx nunTunP  

unT ),( x∂ is the stress vector in the classical theory of elasticity

],rot[div2),( ununuunT ⋅++
∂
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=∂ µλµ
nx

 

n is the external normal vector on S at .S∈z  

The following assertion holds (for details see Mikelashvili [11]).  

Theorem 1.  The Problem 1( Problem  2)   has one regular solution in 

).( −DD  

The purpose of this paper is to construct an explicit solution of system 
(1) for a porous sphere and for a porous space with a spherical cavity. 

 

3. A representation of regular solution 

The following theorems holds:  

Theorem 2.  If  ),,,( θϕ puU is a regular solution of the system (1) 

then  the functions ,div, uu
 

p,ϕ
 

and θ   satisfy  the 

following  equations: 
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where ,3,2,1,2 =jjλ  are roots of the third-degree algebraic 

equation(see below), ).,,,(div θϕ puΦ =  

Proof.  Let U be a regular solution of the equation (1). Applying  the 

divergence operator to  Eq. ,)1( 1 we obtain 
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Let us rewrite the system (3) as follows 
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 We assume that 3,2,1,2 =jjλ are distinct  and different from 

zero. We may assume without loss of generality that 

.3,2,1,0Im 2 => jjλ     
(Mikelashvili [11]). 

It is obvious that, from relation 
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Further, applying the operator    ))()(( 2
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The prove is done. 
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Proof. It is well known, that the general solutions ,divu
 

p,ϕ
 
and  

θ  of  equations (4) can be written  as follows  (Vekua [28])  
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It can be easily checked that; they are the solutions of Eqs. 
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solution of which can be written as 
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where  Ψ  is an arbitrary harmonic  function, 0u
 

is a particular solution of equation (9). 
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Thus, From the above reasoning we have obtained the general 
solution of the system (1) in the following form 
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where 3,2,1,0,,, =jCBA jjj   and 0m are given by (7). 

From  (11)  we conclude that the representation of a solution of  u    
contains a harmonic, bi-harmonic, and a meta-harmonic functions, 

while the representations of p,ϕ  and θ
  

contains only a 

harmonic and a meta-harmonic functions. 

4. Explicit Solution of the Problem 1 
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We are looking for a solution of  the system (1), under boundary 
conditions of  Problem 1, in the form (11), where the functions 

,, jhh and  Ω  are sought in the  form (Smirnov[27]) 
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Substituting the expressions (15) and (16) into (14), taking into account 

boundary conditions  and passing to the limit as R→ρ , for 

determining the unknown  values we obtain the following system of 
equations: 
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From (20) we find 

 
),,()](

)()([1

123323

23322233211

ηξΗ=−+

−−−=+

BABAq

CACAqCBCBq
d
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),,()](

)()([1
),,()](

)()([1
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12212122113

213313

13312133112

ηξ

ηξ

Η=−+

−−−=

Η=−−

−+−−=

+

+

BABAq

CACAqCBCBq
d

h

BABAq

CACAqCBCBq
d

h

(21)
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Thus the functions ,, jhh are known, from (18)we get 

.
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2

3

3

1

4

3

1
200
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+

=

+

=
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=
∂
Ψ∂

=











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∂
∂

+

−=Ω

∑

∑

g
S

G
h
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k k

k

j j

j

λρ
ρ      (22) 

On the other hand, from (15), (19), (21) and (22), we get 

,,,, 314
+++ ==== nnjnjnnnnn gZHYGYGZ  

where 

 

,)(cos
4

12),( 2 y
S

nn dSGP
R

nG ∫∫ ++ +
= γ

π
ηξ   

,)(cos
4

12),( 323 y
S

nn dSgP
R
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= γ

π
ηξ

,)(cos
4

12),( 424 y
S

nn dSGP
R

nG ∫∫ ++ +
= γ

π
ηξ  

.)(cos
4

12),( 2 y
S

jnjn dSHP
R

nH ∫∫ ++
= γ

π
ηξ

 

 

Through inserting the obtained values into (15), we obtain  

,)(
4

1

,)(
4

1)(

,)(
4

1)(
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223

1

43

22

3

22

dsygR
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dsyGR
R

dsyGR
R

h

Sk k

k

S
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+

=

+

+
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∫∫

∫∫

−

−
=

∂
Ψ∂

−

−
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−

−
=
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x
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x

ρ
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ρ
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,,3,2,1),,()(
0

RjHh jn
n

jnj <=Φ=∑
∞

=

ρηξρλ
 

).,(
23

1
2 0

2

0 ηθρρ +
∞

=
∑ 








+
= n

n

n

G
Rn

h  

We assume that the functions ,5,...,1. =+ kf k satisfy the 

following conditions on S  

6,...,1),(5 =∈+ kSCfk . 

Under these conditions the resulting series are absolutely and 
uniformly convergent. 

5. Explicit solution of the Problem 2 

Following the procedure, quite similarly as above, we can construct a 
solution of the Problem 2 for a thermoelastic porous space with a 
spherical cavity. 

Note that the following identities are holds:              
 

















−

∂
∂

=
∂
∂





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∂
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∂
∂

,1rot1
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ρ

ρ
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ρ
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ρ
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3
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

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∂
∂
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
+

∂
∂

=
∂
∂
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∂
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∂
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∂
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∂
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∂
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
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
+

∂
∂
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∑
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j
j
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u
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ρ
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2
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









+−

∂
∂

−







∂
∂
⋅=








∂
∂
⋅ ∑

=j j

jh
hm

nn λρρ
Ψxun

( ) ( ) .grad)(,
ρ

ρ
ρ ∂

∂
=⋅

⋅
−

∂
⋅∂

=
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∂
∂
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Taking into account these identities, let us rewrite the stress vector in 
the following form 



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






+−




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∂
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∂
∂
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3
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j

x
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ρ
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3

1
0 Ψxn rothhm

j
j ⋅+







−−+ ∑

= ρ
µµµ       (23)                          

By direct calculation, from (23) we easily derive 
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For convenience we introduce the following functions: 

.,,

,)(
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By passing to the limit as R→ρ , employing (24), and (11), we derive 

the following system of equations 

,
2

2)2(
2

)1(

1
3

1
0

3

1
2002

2

µ

λρ

ρ

ρ

−

==

−−

=
=

−
−

−

=







−−+























+−

∂
∂

−







∂
∂
⋅

∑

∑

ghhmR

h
hmR

n

Rj
j

R
j j

jΨx

 

,2
3

1
3∑

=

−=
∂
Ψ∂

∂
∂

j k

k g
Sρ

µ  

















∂
∂
⋅−

nR
hm Ψx2

0

 

,)1(2 2

3

1
2002

2
−

=
=

=





















+−

∂
∂

+ ∑ gRh
hm

R
j j

j

µλρ
ρ

  ,
2

)1( 2
1

2

3

1
0

Rj

j

R
ggR

n
h

n
hm

==

−−















 +

∂
∂

=







∂

∂
−







∂
∂

− ∑
ρρµ

,

,

5

3

1
0

4

3

1
0

−

−

=

−

−

=

−−

=







∂

∂
+







∂
∂

=







∂

∂
+







∂
∂

∑

∑

g
n
h

B
n
hB

g
n
h

A
n
hA

j

j
j

j

j
j

       (25)   

 

.6

3

1
0

−

−

=

−

=







∂

∂
+







∂
∂ ∑ g

n
h

C
n
hC j

j
j

 

From here we get
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Let us consider the following system of equations
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      (26)                 

Hence, following Theorem 1, we conclude, that the determinant   of 
system (26) is different from zero.

  
On solving the equations (26), 

similarly as above section, we get 
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 ( ) ,2 00hm+Ω=⋅Ψx    .0=∆Ω  

We are looking for a solution of  the system (1), under boundary 
conditions of  Problem 2, in the form (11), where the functions 

jhh,
 
 and∑

= ∂
Ψ∂3

1k k

k

S
are sought in the  form (Vekua[28]) 
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harmonic of order n  
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  is the Hankel function.    

Taking into account (28), we can write the particular solutions of 

equation   hh =∆ 0  in the form 
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On the other hand, from a)25( , (27) and (28), we get 
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jnG  are the spherical harmonics of order n
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Using (29) and (28), we obtain     
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Since  the functions jhh, and 0h are known, to determination of 

Ω , from  (27), when R=ρ , we get 
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Thus, we have obtained for the Laplace equation 

,,0 −∈=∆Ω Dx                          

the Robin boundary value problem 

,5
−

−

=





 Ω

−
∂
Ω∂ G

Rn
 

the solution of which has the form 

,
),(

)(
2
1)( ds

yxr
yg

S
∫∫=Ω

π
x

               (30)

 

where )(yg  is a solution of the following Fredholm  integral 

equation of second kind 

,
),(

)(
2

1

)(
),(

1
2
1)(

5
−=−

∂
∂

+−

∫∫

∫∫

Gds
yxr
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R

dsyg
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xg

S

S x

π

π
    (31)         

.)(),(
3

1

22 ∑
=

−=
j

jj yxyxr  

It is well known that integral equation (31) is always solvable. 

Substituting the obtained values into (28) and (11), we get the final 
form for solution of the considered Problem 2. 

We assume that the functions  
−

kf satisfy the following conditions 

on S  

6,...,2,1),(5 =∈− jSCfk . 

Under these conditions the resulting series are absolutely and 

uniformly convergent. Moreover  we assume  that the functions 
−Ĝ  

, 
−
kĜ  and its first order derivatives are absolutely integrable and 

vanishing  at infinity functions. 

Thus, the considered problems are completely solved. 

6. Conclusions 

The main results of this work can be formulated as follows: 

• The general solution of the system of equations in the considered 
theory is presented by means of elementary (harmonic, meta-
harmonic and bi-harmonic) functions; 

• Explicit solutions of problems for a sphere and for a space with 
spherical cavity is presented. The obtained solutions are given 
by means of the harmonic, bi-harmonic and meta-harmonic 
functions. For the harmonic functions    the Poisson type 
formulas are obtained. The bi-harmonic and meta-harmonic 
functions are presented as absolutely and uniformly convergent 

series. The harmonic function )(xΩ is given by (30), where  the 

function )(yg  is a solution of the Fredholm  integral equation 

of second kind. 
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