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Abstract

This article is concerned with the coupled linear quasi-static theory of thermoelasticity for
porous materials under local thermal equilibrium. The system of equations is based on the
constitutive equations, Darcy's law of the flow of a fluid through a porous medium, Fourier's
law of heat conduction, the equations of equilibrium, fluid mass conservation and heat
transfer. The system of governing equations is expressed in terms of displacement vector
field, the change of volume fraction of pores, the change of fluid pressure in pore network
and the variation of temperature of porous material. The present paper is devoted to
construct explicit solutions of the quasi-static boundary value problems (BVPs) of coupled
theory of thermoelasticity for a porous elastic sphere and for a space with a spherical cavity.
In this research the regular solution of the system of equations for an isotropic porous
material is constructed by means of the elementary (harmonic, bi-harmonic and meta-
harmonic) functions. The basic boundary value problems (the Dirichlet type boundary value
problem for a sphere and the Neumann type boundary value problem for a space with a
spherical cavity) are solved explicitly. The obtained solutions are given by means of the
harmonic, bi-harmonic and meta-harmonic functions. For the harmonic functions the
Poisson type formulas are obtained. The bi-harmonic and meta-harmonic functions are
presented as absolutely and uniformly convergent series.

1. Introduction

For applications, it is especially important to construct the solutions

In most solids there are pores through which the liquid or gas may
flow. Many materials are known as porous materials, the human skin
has a larger number of pores, cancellous bone is considered as a
porous material, etc.

The foundations of the theory of elastic materials with voids were first
proposed by Cowin and Nunziato (1979,1983) [1,2]. They investigated
the linear and nonlinear theories of elastic materials with voids. In
these theories the independent variables are displacement vector
field and the change of volume fraction of pores. Such materials
include, rocks and soils, granulated and some other manufactured
porous materials. The history of development of porous body
mechanics, the main results and the sphere of their application are
set forth in detail in the monographs (de Boer 2000, Straughan
2008,2017, Svanadze 2019) [3-6] (see references therein). The
generalization of the theory of elasticity and thermoelasticity for
materials with double voids belongs to Iesan and Quintanilla (2014)
[7]. In (2020) [8] Svanadze considered the coupled linear model of
porous elastic solids by combining the following three variables: the
displacement vector field, the volume fraction of pores and the
change of fluid pressure in pore network. In this work the basic
internal and external BVPs of steady vibrations are investigated, the
uniqueness and the existence theorems are proved by means of the
potential method and the theory of singular integral equations. The
coupled linear theory of thermoelasticity for isotropic porous
materials by using the concept of Darcy’s law and the volume fraction
of pore network are presented by Svanadze (2019) [9]. The quasi-static
BVPs of the theories of elasticity and thermoelasticity for porous
materials are studied by Mikelashvili (2020,2021) [10,11]. These works
[8-11] represents a first step in the coupled linear theory of elasticity
and thermoelasticity of porous materials.

of BVPs in explicit form because such solutions enable us to
effectively perform quantitative analysis of the investigated
problems. Questions related to this topic, different types of problems
in the theory of elasticity and thermoelasticity of porous materials are
considered, for example, in the works [12-26], where the explicit
solutions are constructed for some BVPs for the concrete domains.

The present paper is devoted to construct explicit solutions of the
quasi-static boundary value problems (BVPs) of coupled theory of
thermoelasticity for porous elastic sphere and for a space with a
spherical cavity. The regular solution of the system of equations for
an isotropic porous material is constructed by means of the
elementary (harmonic, bi-harmonic and meta-harmonic) functions.
The basic BVPs for a sphere and for a space with a spherical cavity are
solved explicitly.

2. Basic equations and boundary value problems

Let X = (xl 5 Xy X3 ) be a point in the Euclidean three-dimensional

3
space E”. we consider an isotropic thermoelastic porous sphere

D, bounded by a surface S , with center at the origin and radius

R .1et D™ be the whole space with a spherical cavity and with
boundary S.

The basic homogeneous system of equations in the coupled linear
quasi-static theory of thermoelasticity for porous materials expressed

in terms of the displacement vector ll(X), the change of the volume

fraction (J, the change of fluid pressure in pore network p) and the

variation of temperature 9 has the following form (Mikelashvili [11])
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HAu+(A+ p)graddiva+ grad(bo—- S p-y,0) =0,
(aA-a))p—bdiva+mp+y,0 =0,
(kA+iway)p+io(fdiva+me+y,0)=0, 1)
(kyA+iwal)0+iol (y,diva+y,o+y, p)=0,
where | is the thermal expansion coefficient, d, is measures the

compressibility of pores, &, (|, b, m, Y,,Y, are the
!

N . [ Sy . .
constitutive coefficients, K = - M is the fluid viscosity, k' is

the macroscopic intrinsic permeability associated with the pore

network, ko is the thermal conductivity of the porous material, @
is the heat capacity, ﬂ, M are the Lame constants, ﬂ is the
effective stress parameter, () is the oscillation frequency, (0¥ > 0,

A is the 3D Laplace operator.

T
Definition 1. A vector-function U = (ll, o, p, 0 ) defined in the

domain D(D_) Is called regular if

U(x)e C*(D)n ' (D) (Ux)e (D) C' (D ) e

the following conditions at infinity are added:

ou

UcOo(x), € o(x ™),
J

. 2 2 2 2
j=123, |X| =X, +X, +x5.
For the system (1), we pose the following boundary value problems:

Problem 1: (The Dirichlet type BVP) Find a regular solution U,

satisfying in D the system of equations (1), if on the boundary S
the following conditions are given:

u =f'(2), ¢ =f(2), p" =/ (),
0" =f, zeS8,

Problem 2: (The Neumann type BVP)Find a regular solution U,

satisfying in D™ the system of equations (1), if on the boundary S
the following conditions are given:

(P(@,,mu) =f(2), Z—:f - /7 (2),

) .- A
on =/ @), on

where fir :(ﬁ,fz,f;), ff, j{;, f; are the given

S .
functions. Moreover, we assume that f; can be presented in the

ze s,

:fG’

. + i *
form of series, () denotes the limiting value from D ,

lim

D*ox—>ze

U'(z) = U, U@=_lim_U(x),

1
D™ ox—zeS
the vector P(6 x5 n)u is defined in the following form
P(axan)u = T(8xan)u + n(bgo - ﬂp - }/00)’
T(6 x,ll)ll is the stress vector in the classical theory of elasticity

T(0,,mu= Zyz—u+/1ndivu+y[n-rotu],
n

I is the external normal vectoron 3 at Z € S.

The following assertion holds (for details see Mikelashvili [11]).
Theorem 1. The Problem 1( Problem 2) has one regular solution in

D(D).

The purpose of this paper is to construct an explicit solution of system
(1) for a porous sphere and for a porous space with a spherical cavity.

3. Arepresentation of regular solution

The following theorems holds:

Theorem 2. If U(ll, o, p, 9) is a regular solution of the system (1)

then the functions U, lell, @, p and 0 satisfy the

following equations:
ANA+ ) A+ Z)A+ L) =0,
AA+)A+ ) A+ 4K)@=0, @

2 .
where A jo J= 1,2,3, are roots of the third-degree algebraic

equation(see below), ® = (divu, @, p, 9).

proof. Let Ubea regular solution of the equation (1). Applying the

divergence operator to Eq. (1)1 , we obtain

toAdivu+A(be—fp-y,0)=0,
(aA—a)p—-bdivua+mp+y,0=0,
(kA+iway)p+io(fdiva+me+y,0)=0, €)
(kyA+iwaTl,)0+iol (y,diva+y,@+y, p)=0,

Hy=A+2u.
Let us rewrite the system (3) as follows
D(A)® =
HA bA - pA —7,A
-b aA-a m
iof  iom | asio a, iaf;/z ®=0
iolyy, iwlyy, iolyy, kA+iwaTl,
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As we will see

det D(A) = a w1k kA(A + K YNA+ L)A+ A),

2 .
where /1./4, ] :1,2,3 are roots of third-degree algebraic

equation with respect to f
& ook —d & +iwd,E - (iw)*T,d, =0,

d, = u,[- o kk, + iwa(akT, + ayk,)]
+iwa(k,p’ +ky.T,) +b’kk,,

d, = —pky(a,a, +m*) —iowal,u,(y; —aa,)

—u,Tok(ac, +y7)+

+ky(ah’ — o, B +2bmpPB)+Tk(ab® +2y,y,b-yia,)
+Tioa(ap’ = 27,7, B +a,75);

d, = u,(a,y: —ayy! +2myy,)— ua(a,a, +m>)
+dah? - a, B + 2bmB+ 2y, (agb + 2mp)

+20, 87,7, —ayayy —(my, +by, + Br)’.

2 H - .
We assume that A i J= 1,2,3 are distinct and different from

zero. We may assume without loss of generality that

ImA >0, j=123. ixelashvilisa.
It is obvious that, from relation

D(A)® =0

follows the following equations

AN+ A)A+ L) A+ A)divu =0,
AA+ YA+ )(A+ A =0,
AA+ YA+ )(A+A)p =0,
AA+ ) A+ YA+ A)0 =0.

(@)

Further, applying the operator A(A + 112 )(A + ﬂé )(A + ﬂg)
to equation (1)1 and using relations (4), we obtain

AA+ A+ L) A+LB)u=0. o

The prove is done.

Theorem 3. The regular solution U(u, o, p, 9) of the system (1)

can be represented as follows:

3
u=¥- gratd{(m0 —1)h, + Zizj}
=

3
Q=Ah+) Ah,,

Jj=1

3
p=Bh+) Bh,, (6
Jj=1

3
6=Cyh+).Ch,,

=

where

3
divu=h+Y h, div¥W=mgh, Ah=h,

=
2

Ah=0, (A+/Atj)hj=0,

4,0, =a(a0b+mﬁ)—b722 —my,y,

=By +agy s

B9, :a(a]ﬁ_bm)+/8712 Ve

+by,y, —myoyys

Co0% =7/0(a1a0+m2)—7/1(m,8+ba0)

d
+y,(mb—a,p), 2

16,
5, =—atkk, 6 +
K- akk, +iwo(akT, + agky) |+ (o) T,5, +
: Q)

9

my =

Rio|(ay, +m* e, + T, k(y? +aa)]+
L) aly(y; —aa),
Sy =—a(a,a, +m*)+a,y; —ayy; +2my,y,,
A5, = bk, X, - Liolk,(ba, + fm) + KT (y,y, + ab]
+ (i) T4, j=123,
B8, =—iwaf k., +(io)’ T)B,)S, -
/ﬁ‘ia)[_ ioaTy(yyy, —aff) —ky(Ba, — bm)]’
C,6, =—iwalyy kA, +(iw)’T,C)6,
+ ol [~ ioa(By, - a7, + k(=ay, +b7,)}
d
Ho +bA4, — BBy = y,Co ==

t=pumy,
bAj _ﬂBj _7/0Cj =—Hy.

0
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Proof. It is well known, that the general solutions div U, @, p and

0 of equations (4) can be written as follows (Vekua [28])
3 3
divu=h+> h, @=Ah+) Ah,
j-1 Jj=1

3 3
p=Bh+> Bh, 0=Cih+> Ch,.

J=1 J=1

(®

It can be easily checked that; they are the solutions of Egs.
(1)2 , (1)3 , (1)4 . If supposing that h and hi are known functions,
taking into account the representations (8), to define the displacement

vector U from Eq. (1)1, we get the following non-homogeneous

equation

3
Au =—grad| (m,—1)h _Zh/‘ ,
j=1
©)

solution of which can be written as

u=¥+u,,

where W isan arbitrary harmonic function, U,

is a particular solution of equation (9).
3 h )
u, =—grad (my—Dh,+ > —L| o
= A

Herein it is assumed that, the functions divu \P, h j and h

are interrelated by the following relations
3
divu=h+ Zhj, div¥ =myh,
j-1

Ahy=h, Ah=0, A¥=0.

Thus, From the above reasoning we have obtained the general
solution of the system (1) in the following form

3 h.
u="Y—grad (m, - Dh, + > —|,

=g

3
p=Bh+> Bh,

J=1

3
p=Ah+> Ah,
Jj=1
3
0=Ch+>.Ch,, a9
j=1
where Aj, Bj, Cj,j = 0,1,2,3 and /M are given by (7).

From (11) we conclude that the representation of a solution of U
contains a harmonic, bi-harmonic, and a meta-harmonic functions,

while the representations of (), P and 6 contains only a

harmonic and a meta-harmonic functions.
4, Explicit Solution of the Problem 1
coordinates

Let wus introduce the spherical

x, = psin&cosn, x,=psinésing,

p=Ax+x +x;, 0<p<2n.

y,=Rsin& cosn,, y,=Rsiné;sinrn,,

equalities

x, = peosé,

¥, =Rcosé,.

0
Taking into account the identity (X' grad) = ,Oa—,by direct
%

calculation, obtain

3.0h,
(x-u)=<x-l1')—p% (my =Dy + > |

=

from 11 we

(12)

It is easily to verified, that the function (XT) satisfies the

following equation A(X . ‘P) =2div¥ = 2m0h, (13)
the solution of which has the form

(x-¥)=Q+2myh,,

AQ = 0, the
function ho is a bi-harmonic function and chosen such that

Ahy=h,  Ah=0.

where () is an arbitrary harmonic function

Substituting the expression (13) into (12) and taking into account (11),
we obtain

0 3. h,
(X.u)=Q+2m0h0—p% (mo_l)ho+;7; ,

J

3 3
o=Ah+> Ah,, p=Bh+) Bh,
Jj=1 Jj=1
(14)

3 3
O=Coh+Y Ch,, diva=h+>h,.

J=1 J=1
3o 5ot
cros, 1 os,

We are looking for a solution of the system (1), under boundary
conditions of Problem 1, in the form (11), where the functions

h, h;,

and Q are sought in the form (Smirnov([27])
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Bitsadze
_~(rY _(pY
h—nZ_;[Rj Z(En,  Q ;(Rjn(é,n),

=Z®n(/1,/0)yjn(§,77)a J :192’3’ (15)

3 a\I]k © pjn
L —1Z 5 5 <R5
;ask Z(R W&, p

Z

spherical harmonics of order 72,

Yn’ anand Y ] =

jn> 132739

no are the unknown

JRJ | (4,p)
D, (4,p) = =,
j \/;JnJrl(ﬂjR)
2

J _,_l (ﬂj p) is the Bessel function.
2

Taking into account (15), we can write the particular solutions of

equation Aho =/ in the form

PP 1 (pY
hy =—Z3 o (Ej Z,0.m). s

For convenience we introduce the following functions:

+ + . + 2 Ou +
(x-f) =g’ (divh)" = —Ft =g,
=S,
a7
p =g,, p =g, 0 =g;.

+
We assume that the functions g can be represented in the form of

series
o0
= , k=12,..,6
- gkna — LyLseenYy
n=0

+
where &, are the spherical harmonic of order n.

. 2n+
gkn 47Z'R

”P (cosy)g,dsS,,

Pn (COS }/) is Legendre polynomial of the n-th order COS } is an

angle formed by the radius-vectors OX ana OY

T

=sin&sin &, cos(n —1,) +cos& cos &,.

Substituting the expressions (15) and (16) into (14), taking into account
boundary conditions and passing to the limit as O —> R, for

determining the unknown values we obtain the following system of
equations:

Q" +2m,h, p (m0 D, +Z =g/,
J=1 j
+ 2 + 2 alP +
h +Zh =&, z ‘ =83
j=1 k=1 aSk
3 3
A"+ Ah; =g;, Byh'+> Bhi =g, @®
j=1 Jj=1

From (1 8)3 and (1 8)4 we get

h*(&m) =

1 + + + + + (9)
(108, +bgy — P85 — 7,86 1=G (E,n).
myp
Let us consider the following system of quations
3
+ + +
ZAjh, =8, — 4G =q,,
j=1
(20)

3
Zth; =gs —B,G" =q,,
=1

3
chh; =
j=1

6 _COG+ =45,

Following Theorem 1 we conclude that the determinant d of system
(20) is different from zero and the system (20) is uniquely solvable.

From (20) we find
|
h' = E[% (B,C; — B,(,) —q,(4,C; — 4,C,)
+q5(4,8;, — 4,B,)]=H,(&,n),
.1
h = E[_% (B,C; — B,C)) + q,(AC; — 4,C)
=H,(&,n),
.1
INES E[% (B,C, - B,C)) —q,(A4C, - 4,C)

+q;(4B, — 4,B))]=H;(&,n),

—4q; (AIB3 - 4;B, )]

(21)
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Al AZ A3
d=|B, B, B, #0,
Cl C2 C3

Thus the functions h, h i are known, from (18)we get

Q" =g —2myh,
{(m0 1)h, +Z } 22)
j=1 j
ia\m )
k=1 S

On the other hand, from (15), (19), (21) and (22), we get

z,=6,, Y,=G,, Y,=H,, Z,=g,,

where

G, (&, )— 2+l ”P (cosy)G*dS,,

g5, (&.m) = in; ”P (cosy)g;dS,,

HEE 2"; jsj P,(cos 7)G;dS,.
H, (& =22 L ([ B(cos )t dS,

Through inserting the obtained values into (15), we obtain

_ L R=p e
h) = — jj ol (y)ds,
_ 1 R _p2ﬂ+
”‘mfsj o L (v)ds,

h=> @A), (En), j=123, p<R,
n=0

h:f’;zﬁ(j “(0.1).

n=0

n
We assume that the functions f P k= 1,...,5,satisfy the

following conditions on S

e (S), k=1..6.

Under these conditions the resulting series are absolutely and
uniformly convergent.

5. Explicit solution of the Problem 2

Following the procedure, quite similarly as above, we can construct a
solution of the Problem 2 for a thermoelastic porous space with a
spherical cavity.

Note that the following identities are holds:

igradg = lgrald(,oi - ng,
on yo, op

iroth =lrot pi—l h,
on P op

a1j 0 0 o 0
+ o —

divn —_ =
£ (8,0 )5 5s op opos,

div[n-rotu] = —idiv‘l‘, if AY¥Y =0,
op

3
/ldivu—bgo—ﬂp—;/oé?:,u(mo—2)h—2,uZhj,
j=1
diva—uz i+l divu—l(n-a—u}
on \op p P on

(m%‘j:%(x %"I:j o {(mo Dh, +; ,}
(X-G—TJ=G(X.T)—(X'T)
P

on on

, (x-grad)= /0i
op

Taking into account these identities, let us rewrite the stress vector in
the following form

PO ,m)u= 2;12—T

24 0
_—grad[p%—ll{(mo D, +Z /12:|

P

+n{u(m0—2)h ZyZh} » —[x-rot¥]. (3

Jj=1

By direct calculation, from (23) we easily derive
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(x-PU)= Z,ULX 8_‘1’)
on

& b,
—Dhy+ ) —
8,02 |:(m0 ) 0 ;ﬂz:|

J

3
v P{ﬂ(’"o ~2)h-2uY) h}
(24)

J=1

3 3
0 0(Pu), =2,uiz oY,
=108, Op

div(P(0,.m)U) = 2" 2_“£ a“'j
0

ol on

Jj=1

{(mo D, + Z }
j
For convenience we introduce the following functions:

(x-f)" =g,, (divf) =g,

S o(Pu), | -
{Z 8Sk J _g3:»

Jj=1

o\ . (@) _,. () _,
(811} =84 (Onj =85> [an =8s-

By passing to the limitas 0 —> R, employing (24), and (11), we derive

the following system of equations

w3 A ]|

+—((m0 23 J _&

Jj=1 2/’1

0 oY
2u— k=g,
ﬂapjzlaSk &3

il

Jj=1 7%
3.(0h, )
o] (B E(2(y8))
on S\ On 2u\ op R*)) &
oh\ 3 oh.\
Al —| +> 4| —L| =g,
0(8}1 JZ_:‘ "(an] 84
oh\ < oh.\
B|—| +) B,|—| =g,
O(an ; J( l’l] gS
@5)
ohY & . (0h )
C|l—| +)C|—| =g,
(&) 2e(5) ==
From here we get
oh\ 0, - _
(aj = m[ (g2+ 12)+bg4
-Bgs 78 1=G".
(25),

Let us consider the following system of equations

ZS:A ) _gr- a6 -

£ I\ on =&, oY =4

3 oh.\

2B =] =8 -B,G =q,,

./:1 an (26)
> (en)Y )

2.C o =8, — (G =q;.

~.
Il
—_

Hence, following Theorem 1, we conclude, that the determinant of
system (26) is different from zero. On solving the equations (26),
similarly as above section, we get

oh\ 1
(_lj =—[q,(B,C; — B,C,) — q,(4,C; — 4,C,)
on d

+q;(4,B, - 4,B,))] =G,
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on d
—q;(4,B,— 4,B)] =

oh,\ 1
[_2j =—[-a4,(B,C; = B,C)) + q,(4C; - 4,C)
G,,
oh,\ 1
(_SJ =—[q,(B,C, - B,C))—q,(4C, - 4,C))

+q,(4,B, - 4,B)]=G;,

o AN 0’ 3 h

Ry ~hy + > L
[X anJ [8,02 |:(mo )0 < ﬂi :U )
p:

R 3
——| (m —2)#—22;;7] +—_G;,
2( 0 g J - 2#
0 < o, _ -
H_— 3
a:Djlask
where
[ .5_‘1’j2 9 1w,
on op p
(x-¥)=Q+2m,h,, AQ=0

We are looking for a solution of the system (1), under boundary
conditions of Problem 2, in the form (11), where the functions

h, hj andi 6\Pk

are sought in the form (Vekua[28])

k=1 k
0 n+2
h=— , >R,
,,Z:O(I’Z+1) n+l1 n(é: 77) p
(28)
hy =2 AP, (). =123,
3 aLPk 0 n+2
i Zm (8570,
; oS, Z; e
Zn , an and an, ] = 1,2,3, are the unknown spherical

harmonic of order 71
VRH® (2,p)

,(4,p) = m

P >R,

1
H ( )1 (ﬂ i p) is the Hankel function.

nt—
2

Taking into account (28), we can write the particular solutions of

equation Aho =/ in the form

T im

n=0

2

Rn+2

Z,(&,m). @9

On the other hand, from (25)11 ,(27) and (28), we get

Z,&m=G,,

pP>R, —2u(n+1)Z, =g,

Y, (S.m) = J=123,

(/1 R)’

0, (ﬂ,-R){%fDn(%p)j ,

p=R

where G ; » g ; , and G/_n are the spherical harmonics of order n

ZgSn’

o0

G =2G G =2y

n=0

2n+1

G, = = H P,(c0s7)G " (£,,1)dS,

2n+1

Gr= s j [ P.(cos )G, (£,
2
g5, = 4’;;2 HP (cos )g; (£.7,)dS, .

Using (29) and (28), we obtain

i R G e,

0

Z (ﬂjRp)) 7(60”70) p>R,

oY,
23,

k=1

Rn+2 g}—n
2/” n=0 p .

n+l1

2

p 0 Rn+2
=£ =G
O 2 ; 1 2]’[ p n(g 77)

Since the functions h, h i and hO are known, to determination of

Q, from (27, when P = R . we get
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o Q) _ o 1 _
:G4 —2m0 a——E hO :GS‘

on R

Thus, we have obtained for the Laplace equation

AQ=0, xeD,

the Robin boundary value problem

o Q

on R >’

the solution of which has the form

W
Qx 272' I

r(x,y)

’

(30)

where g(y) is a solution of the following Fredholm integral

equation of second kind

1 0 1
—g(x)+gj.sj‘%r(x—’wg(ﬁds
31)
- 8D 4o
27R %5 r(x,y) >

) =D, -

It is well known that integral equation (31) is always solvable.

Substituting the obtained values into (28) and (11), we get the final
form for solution of the considered Problem 2.

We assume that the functions f; satisfy the following conditions

onS

fk7 ECS(S)a

Under these conditions the resulting series are absolutely and

j=12,..6.

uniformly convergent. Moreover we assume that the functions G~

A

s G; and its first order derivatives are absolutely integrable and

vanishing at infinity functions.
Thus, the considered problems are completely solved.
6. Conclusions

The main results of this work can be formulated as follows:

. The general solution of the system of equations in the considered
theory is presented by means of elementary (harmonic, meta-
harmonic and bi-harmonic) functions;

. Explicit solutions of problems for a sphere and for a space with
spherical cavity is presented. The obtained solutions are given
by means of the harmonic, bi-harmonic and meta-harmonic
functions. For the harmonic functions the Poisson tyg
formulas are obtained. The bi-harmonic and meta-harmonic
functions are presented as absolutely and uniformly convergent

series. The harmonic function Q(X) is given by (30), where the

function & (y) is a solution of the Fredholm integral equation

of second kind.

Declaration of Conflict of Interests

The author declares that there is no conflict of interest. They have no
known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

References

[1] Nunziato, JW., and Cowin, S.C.,, A nonlinear theory of elastic
materials with voids. Arch. Rational Mech. Anal 72(2) (1979) 175-
201.

[2] Cowin, S.C. and Nunziato, J.W., Linear theory of elastic materials
with voids. J. Elasticity 13(2) (1983) 125-147.

[3.] De Boer, R. Theory of porous media. Highlights in the historical
development and current state. Berlin-Heidelberg-New York:
Springer, 2000.

[4.] Straughan, B., Mathematical aspects of multi-porosity continua.
Advances in Mechanics and Mathematics. 38: Springer,
Switzerland, 2017.

[5.] Straughan, B, Stability and wave motion in porous media. New
York: Springer, 2008.

[6] Svanadze, M., Potential method in mathematical theories of
multi-porosity media. Basel: Springer, 2019.

[7] Iesan, D, Quintanilla, R., On a theory of thermoelastic materials
with a double porosity structure. J. Thermal Stresses 37 (2014)
1017-1036.

[8] Svanadze, M., Steady vibration problems in the coupled linear
theory of porous elastic solids. Math. Mech. of solids 25(3) (2020)
768-790.

[9.] Svanadze, M. Boundary integral equations method in the
coupled theory of thermoelasticity for porous materials.
Proceedings of the ASME 2019 International Mechanical
Engineering Congress and Exposition. Volume 9: Mechanics of
Solids, Structures, and Fluids. Salt Lake City, Utah, USA.
November 11-14, 2019. VOO9T11A033. ASME.

[10.

Mikelashvili, M., Quasi-static problems in the coupled linear
theory of elasticity for porous materials. Acta Mech 231(3) (2020)
877-897.

[11.] Mikelashvili, M., Quasi-static problems in the coupled linear
theory of thermoelasticity. J. Thermal Stresses 44(2) (2021) 236-
259.

[12.

Ciarletta, M., Scalia, A., On uniqueness and reciprocity in linear
thermoelasticity of materials with void. J. Elasticity 32(1993) 1-
17.

[13.

Bitsadze, L., Explicit solution of the Dirichlet boundary value
problem of elasticity for porous infinite strip. Z. Angew. Math.
Phys 71(5)2020) 145.



Bitsadze

Brilliant Engineering 1 (2022) 4501

[14.]

[15.]

[16.

[17]

[18.]

[19]

[20.

[21.]

[22.

[231]

[24.]

[25.]

[261]

[27]

[28.]

Bitsadze, L., Tsagareli, I, The solution of the Dirichlet BVP in the
fully coupled theory for spherical layer with double porosity.
Meccanica 51(2016) 1457-1463.

Jaiani, G., Bitsadze, L., Basic Problems of Thermoelasticity with
microtemperatures in the half-space. J. Thermal Stresses 41(9)
(2018) 1101-1114.

Bitsadze, L., Zirakashvili, N., Explicit solutions of the boundary
value problems for an ellipse with double porosity. Advances in
Mathematical  Physics  2016;  Article  ID 1810795,
DOI:10.1155/2016/1810795.

Bitsadze, L. Explicit solutions of boundary value problems of
elasticity for circle with a double voids. J. Braz. Soc. Mech. Sci.
Eng 41(2019) 383.

Bitsadze, L., On one BVP for a thermo-microstretch elastic space
with spherical cavity. Turk. J. Math 42(5) (2018) 2101 -2111.

Bitsadze, L., Explicit solutions of the BVPs of the theory of
thermoelasticity for an elastic circle with voids and
microtemperatures. J. of Applied Mathematics and Mechanics
100(10) (2020).

Singh, B., Raj Pal., Surface waves Propagation in a generalized
theroelastic material with voids. Applied Mathematics 2(2011)
521-526.

Pompei, A. and Scalia, A, On a steady vibrations of elastic
materials with voids. J. of Elasticity 36(1994) 1-26.

Magaa, A., Quintanilla, R. On the spatial behavior of solutions for
porous elastic solids quasi-static microvoids. Mathematical and
Computer modeling 44(2006) 710- 716.

Coussy, O., Mechanics and Physics of Porous Media. Dordrecht:
Springer, 2005.

Svanadze, M., and De Cicco, S., Fundamental solutions in the full
coupled linear theory of elasticity for solids with double porosity.
Arch. Mech 65(5) (2013) 367-390.

Straughan, B. Modelling questions in multi-porosity elasticity.
Meccanica 51(2016) 2957-2966.

Svanadze, M.Steady vibration problems in theory of elasticity for
materials with double woids.Acta Mech 229(4)2018) 1517-1536.

Smirnov, V.I, Course of Higher Mathematics. v. III, part 2,
Moscow: Nauka, 1969.

Vekua, I, New methods for solving elliptic equations.
Amsterdam, New-York, Oxford, North-Holland Publ. Company
1967.

How to Cite This Article

Bitsadze, L., Boundary Value Problems of Thermoelasticity for Porous
Sphere and for A Space with Spherical Cavity, Brilliant Engineering,
1(2022), 1-10. https://doi.org/10.36937/ben.2021.4501

10



